

Private Industry Role in Next Generation Internet

Bob Aiken

NGI Project Leader

DOE

aiken@er.doe.gov

Large Scale Networking Working Group

June 1997

NGI: Foundation for the Future

Points to Remember

 Dynamic Virtual Networks are the Future

 Joint Industry, Government, and Academic R&D collaborations are essential for success

Goal 3: Applications

- Applications
 - Medicine
 - Crises Management
 - Basic Sciences
 - Education
 - Environment
 - Manufacturing
 - Federal Services

- Characteristics
 - DistributedComputing
 - Remote Operation
 - Digital Libraries
 - Collaboratories
 - Privacy / Security

Goal 2: Technologies

- Network Engineering
 - Planning and Simulation
 - network planning language
 - run time tools
 - Monitoring
 - gathering data
 - network engineering
 - network management
 - run time (i.e. dynamic) analysis
 - QOS and drill down analysis tools
 - Integration
 - engineering tools, switching/routing, and transmission to work smoothly

Goal 2: Technologies ctd.

- Network Engineering ctd.
 - Data Delivery
 - routing / switching
 - best effort vs priority traffic
 - dynamic routing vs virtual circuits (VCs)
 - greedy admission vs guaranteed delivery
 - flat rate vs variable costing
 - multicast (reliable vs unreliable)
 - real time protocols and traffic

Goal 2 : Technologies ctd.

- Network Engineering ctd.
 - Managing Lead User Infrastructure (fast, complex, dynamic)
 - Concurrent Production and Network Research traffic (virtual networks)
 - (de) aggregation of tributaries
 - operation and management strategies and tools
 - scaling (speed, size, complexity)
 - user requirements that are orders of magnitude larger and more complex that normal applications and traffic

Goal 2: QOS (end-to-end)

- Baseline QOS Architecture
 - framework of models, languages and protocols to specify QOS
 - negotiate acceptable tradeoffs
 - receive feedback on delivered QOS (enable adaptation)
 - APIs supporting propagation of QOS constraints and feedback
 - admission control
 - accounting / costing
 - prioritization
- Drill Down Technologies
 - support QOS across ("drill down") layers
 - expose interfaces to QOS and network capabilities
 - emphasis on OS< communication libraries, middleware services and distributed objects

Goal 2: QOS (end-to-end) ctd

- Next Generation Network Technologies (in addition to QOS)
 - RSVP
 - IPv6
 - Routing / Switching
 - Multicast (IP and ATM)
 - Real Time protocols
 - admission control (IP and ATM)
 - accounting / costing (IP and ATM)
 - scheduling (IP and ATM)
 - prioritization (IP and ATM)

Goal 2: Security

- secure and fair means for users to access network resources (e.g. QOS)
- smart network management
- inter-network peering (e.g. surety of routing updates)
- nomadic/remote access
- Public Key Infrastructure (industry interoperable)

Goal 1: 10 sites at 1000x

- end-to-end gigabits and terabits to Applications
- end system 1000x interfaces (e.g. HIPPI 64)
- Operating System (OS) and end system architectures
- 1000x network management tools / capabilities
- (de) aggregation of high speed tributaries
- WDM at WAN, LAN and Local Loop
- optical, electrical, hybrid hardware
- interconnect to 100x networks

Goal 1: 100 sites at 100x

- end-to-end 100 megabits and up
- 100+ Universities, Labs, and Federal Centers
- supports applications (goal 3) using advanced network technologies (goal 2)
- IPv4 minimum bearer service
- IPv6 in future
- ATM and other services as required (VPNs)
- Gigapops (aggregation points)
- vBNS is I2 and Gigapop interconnect fabric
- concurrent production and network research

MORPHNET(Virtual Networks)

Goal 1:100 sites at 100x ctd

- Interconnection
 - at L2 and L3 among Federal Networks / Carriers
 - QOS (IP and ATM)
 - Management tools and capabilities (NOCs, Helpdesks, ...)
 - Monitoring, Analysis and Accounting (settlements) tools
 - routing / peering exchanges between Federal networks and Federal networks at Gigapops (when appropriate)
 - Flexible and dynamic methods for setting up interagency virtual networks

Goal 1: 100 sites at 100x ctd

- Network Management
 - distributed help desk
 - security and authentication methods
 - gigapop and agency network NOCs (NOC to NOC)
 - applications can schedule bandwidth and services
 - network management tools (existing and new)

Summary

- Need joint commercial, government, and university R&D ventures to define and build the future Network and services
- End users need capabilities to "see" and "control" the Network
- The Network is:
 - switches, routers, muxes
 - lines, circuits, services
 - end systems, operating systems, libraries
 - applications
 - people, relationships

More Information ...

- Next Generation Internet
 - http://www.ngi.gov
- Internet 2 (university consortium)
 - http://www.internet2.edu
- NASA Research and Education Network
 - http://www.nren.nasa.gov

DOE

- http://www.es.net
- http://www.anl.gov/EC
 T/Public/research/mor
 phnet.html

DARPA

http://www.ito.darpa.mil/ ResearchAreas.html

NSF's Connections

– http://www.vbns.net